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A recursive formula for the evaluation of ($1 ?wy (x)l$) and 
its application in the semiclassical theory of gravity 

S Randjbar-Daemi 
International Centre for Theoretical Physics, Trieste, Italy 

Received 23 November 1981 

Abstract. For a quantum field coupled to a classical background g,?-field we propose a 
recursive technique which relates the diagonal matrix element (i,bIT,,Ii,b) to its value at 
t = -W. We then employ the lowest non-trivial order to renormalise the semiclassical 
theory of gravity. The existence of two important classes of solutions of the linearised 
theory is briefly discussed. 

1. Introduction 

In recent years there has been a considerable amount of interest in techniques of 
regularisation of the off -diagonal matrix elements (out, 0)  f w v  (x ) IO,  in) where f w v  is 
the stress-tensor operator of quantised fields propagating in a fixed background 
space-time with the metric tensor g,, (for a review see Birrell and Davies 1982). 

In § 2 of this paper we would like to carry out a similar investigation, namely we 
will give a recursive formula to evaluate the diagonal matrix elements ( $ 1  f F u ( x ) l $ )  
associated with a Hermitian scalar field operator 6 propagating in a fixed classical 
gravitational field g,,,. These matrix elements, in addition to being interesting in their 
own right, also arise in a natural manner in the semiclassical theory of gravity, where 
one couples a classical gravitational field g,, to the quantised matter through the 
action integral 

(1) 

Here WE = (16~’)-’1 d4x 4-g R and Wsch is the quantum matter action written in 
the Schrodinger picture (Kibble and Randjbar-Daemi 1980). The equations of motion 
derived from equation (1) may be transformed into the Heisenberg picture, in which 
they read 

(2a 1 
R,, -kws = - 8 ~ ~ ~ ( $ l f ~ , ( X ) l $ ) ,  (2b) 

where I+) is a normalisable Heisenberg state vector and K *  is Newton’s constant. 
As in any quantum field theory one can only hope to obtain perturbative solutions 

to epuation (2). For this purpose it is essential to have a technique of evaluating 
( ~ ~ T , v ( x ) ~ + )  in a step-by-step fashion, for instance, from an initial flat space matrix 
element ($lf~,,l$). This is the problem which we solve in § 2. In § 3 we specialise 
our general formula to the lowest non-trivial order. Then for the choice I$) = 10, in) 
we apply the dimensional regularisation technique to identify the divergent parts. In 

W[~$)Y ggul= WE[gwul+ W S c h k w u ,  I $ ) ] *  

[ ( -g)-”’a,(J-g g’””a,) -/L2]C$(x) = 0 ,  
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Q 4 we construct a renormalisable action for the semiclassical theory of gravity from 
which we derive the final form of the linearised renormalised Einstein field equations. 
We also derive the ' p  function' equations for all the parameters of the model. At 
the end of this section we argue that the semiclassical gravitational equation (2) may 
be employed to resolve the well known finite renormalisation ambiguities. In 0 5 we 
first summarise the results of the previous sections and then we go on to discuss, 
though very briefly, the structure of two important classes of solutions of the equations 
of motion. These are the gravitational wave solution propagating with the velocity 
of light and the solutions which represent small perturbations of the flat space-time 
and grow exponentially in time. The existence of this latter class of solutions can be 
an indication of instability of the state (q,,,, 10, in)). 

Notations and conventions 

Units: h = c = 1, sgn g,, = (-, +, +, +),the sign ':=' means definition. The Ricci tensor: 
R,, = a,l?",-, , . . We also absorb the factors of 21r by putting a bar on d's and a's, 
i.e. d"k := (21r)-" d"k and 6 " ( k )  := (27r)"S"(k). 

2. Calculation of <+blTMv(x)l#> 

In this section we will assume that g,, is a fixed asymptotically flat background metric. 
We also choose a class of harmonic coordinate systems distinguished by the condition 

a , ( d q g F u )  = 0, Y = 0, 1 ,2 ,3 .  (3) 

A+ (x, x ') := i($ I T(d (X I f  (x'))I$) 

[g""(x)(a/ax")(a/ax") - /.L']A,,,(x, x') = -S4(x, X')(-g(x))"''. 

Then it is easily seen that the two-point function A,(x, x') defined by 

(4) 

( 5 )  

Clearly as x + x' the function A, becomes undefined. Therefore before taking this 
limit we have to regularise A+ We will define ($Iq5'(~)19)"~ and ($ld,q5(x)~&~(x)I$)'"~ 
via 

(6a )  

satisfies the equation 

($16 ' (~ ) l$ ) '~~  := [-iAy (x, x ' ) ] ~ = ~ , ,  

( $ l a , d ( ~ ) a ~ ( x ' ) l $ ) ~ " ~  := [-i(a/ax")(a/ax")A',"B(X, x ' ) ] ~ = ~ , .  (6b)  
Having obtained these quantities, we insert them into 

($1 ~,Y(X)I$L)reg 

:= -($lad$ ( x ) a d  (x>I$,>reg + k,"(X) 

x ~ g " ~ x ~ ( $ l ~ * ~ ~ X ~ a ~ ~ x ~ l $ ~ r e g + ~ 2 ~ $ 1 ~ 2 ~ X ~ l $ ~ r " ~ .  (7) 
Thus the problem of finding a perturbative scheme of calculating ($~f , , , (~ )~$)~"~ 

essentially reduces to that of A,(x, x ' ) .  This can be achieved by solving equation ( 5 )  
under suitable boundary conditions. We will adopt the following initial conditions: 
as t and r '+  -a then As(x, x') + AZ(x, x') where 

(8) AO, (x, x') := i($l~(dO(X)~O(X'))l$). 
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Eo is a free Klein-Gordon field, i.e. 

(a’ - kz)& = 0. (9) 

These conditions are compatible with the assumption that initially the space-time is 
flat. With this initial condition, a convenient way of obtaining a step-by,-step solution 
of equation ( 5 )  is to introduce new fields h”“ and h through 

g””(x) := q’” - h’”(X), ( loa)  

(-g(x))”’ := 1 + $h ( x ) ,  
where 

9’” =diag (-1, +1, +1, +l). 

These equations must be interpreted as simple field redefinitions. They do not 
mean any linearisation. The function h ( x )  can of course be expressed in terms of 
h’”, but for the time being we do not need it. We only mention that in the linearised 
theory h = qLLYh’”. 

Upon insertion of equation (10) into equation (5 ) ,  we may write it in an integral 
form which incorporates the specified initial conditions, i.e. 

A + ( x ,  x ’ )  = A$(x,  x ’ )  - I d4y AR(x  - y ) H ( y ) A + ( y ,  x’), (11) 

where A R ( x  - y)  is the retarded propagator of the operator (a2 - k’) and the operator 
H is defined by 

a a  a a  
a y w  a y ”  ay  ay  

H ( y )  := -$h(y ) (  qpy- - - p 2 )  +(1 +$h(y))h”’(y)--;:  7. (12) 

Although A + ( x ,  x ’ )  of equation (11) satisfies equation ( 5 )  with respect to its x variable, 
it does not do so, however, with respect to its x ‘  variable. The reason for this is that 
as it stands the second term in equation (1 1) is not manifestly symmetric with respect 
to the interchange 6f x and x ’ .  If we simply symmetrise it then it will not satisfy 
equation ( 5 )  with respect to any of its variables. To circumvent this obstacle we first 
symmetrise the RHS of equation (11) and then add a compensating term to be 
determined consistently. Thus 

The compensating function F+ must be chosen in such a way that A&, x ’ )  meets all 
of our requirements. Before going any further we rewrite equation (13) in a slightly 
different form. To this end, first we substitute equation (10) into equation (3) to obtain 

a,H’” = o (14a) 

(146) 
Next we substitute equation (12) into equation (13) and make use of (14). After some 

where 

Hfi’ := iqfi”h - h - $hh @”. 
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integrations by parts we obtain 

A+(x, x ’ ) = A ~ ( x ,  x’)- $k2[AR(x - y ) h ( y ) A + ( ~ ,  x’)+x*x’]  

+ AR(x -y )F+(y )AR(x’ -y ) } .  (15) 

Now we are ready to specify the function F+ by imposing the condition that A+(x, x‘) 
satisfies equation ( 5 )  in both of its variables x and x’. Thus if we operate on (15) by 
(~””(a/ax”)(a/ax’) -p2 ) ,  say, we then obtain the following consistency equation for 

AR(x - x’)F+(x) 

F+ : 

1 2 R  I IF A (X -y)h(y)(a2,-CL2)A+(y,X) 

Hence the recursive solution for A+(x, x‘) in a given g,, field must be evaluated in the 
following order. 

We start with the zeroth-order solution Ai(x, x’) of equation (15) and substitute 
it into equation (16) to obtain the first-order solution for Fe This together with A: 
for A+ must be inserted into the RHS of equation (15) to yield the first-order solution 
for A,,,, which in turn must be replaced in equation (16) to produce the second-order 
solution for F4 and so on. These steps may be repeated an arbitrary number of times. 

It is worth mentioning that here we are dealing with the series expansion for A* 
in the full background field g,, (or rather h””). At each stage of this expansion we 
may in turn expand h”’ (and h)  in a power series of some parameter, the Newtonian 
constant say. In a perturbative treatment of equation (2) these two expansions must 
of course 20 hand in hand. 

Now, as an example (and for application in the next section) let us choose 
14) = 10, in) and calculate A+(x, x‘) up to the lowest non-trivial order. For this choice 
of I$) the lowest-order solution is of course trivial. It is the free Feynman propagator 
AF (x, x’). If we substitute this into equation (16) we obtain (we omit the subscript I$)) 

-cL a a  
AR(x - x ’ ) F ( ~ ) ( x ) = - A ~ ( x ‘  - x ) ~ ( x ) + T  ax ~ ( A R ( ~ ‘ - ~ ) H ” ” ( ~ ) ) ,  ax 

2 

To obtain the next-order solution this expression for F(ll as well as AF for A: must 
be inserted into equation (15). In doing this we also make use of the identity 

(17) AR(x - y )  = AF(x - y )  - A‘-’(x - y) ,  

where A‘-) is the negative frequency function defined by 
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For the application in the next sections it is convenient to introduce a new notation Ah, 
2 

Ah(x, x ’ )  := -I d4y($A‘-’(x-y)h(y)A‘-’(x’-y) 

Then equation (19) may be written as 

A(i)(x, X ’ )  = Ainh(X,  X ’ )  + A h ( &  X ’ ) ,  (21) 

where Ainh(x, x ’ )  is defined in a self-evident way. 

equation, i.e. 
The subscript on Ah is to remind us that it satisfies the homogenous Klein-Gordon 

(a2 - p 2 ) h h ( X ,  X ’ )  = 0. 

Ainh(x,x’) on the other hand will satisfy an inhomogenous equation. Hence the Ah 
term in equation (21) has the effect of ensuring the correct boundary condition satisfied 
by A(l).  (It is obvious from equation (19) that A(l) satisfies the prescribed initial 
condition .) 

To go to higher-order terms we must substitute equation (21) into equation (16) 
to get the second-order F and then replace the result in equation (15) to calculate 
the second-order x ’ ) .  This procedure may be repeated up to any desired order. 

3. The linearised theory 

Let us assume that all the components of h”’ satisfy the inequalities IhW’l<< 1. Then 
neglecting the second and higher powers of h”’ we obtain 

We shall1 also assume that 14) = 10, in) and then substitute equation (22) into (21) and 
regularise A(l).  

It is interesting to note that the contribution of Ah(x, x ’ )  in equation (21) is finite 
as x + x ’ .  To see this, we insert the Fourier transforms of different A-functions into 
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the linearised version of equation (20) to obtain 

Ah(x, x ’ )  = 1 $4 ~ “ ( 4 )  1 $ p  exp[ - ixp +in‘@ + 411 

Since, as x + x ‘ ,  the range of the p integral is confined to the finite intersection of the 
two overlapping cones defined by 

e(po)6(p2+cL2)  and e(-po-q0)6(q2+2qp), 
the integral can never diverge. In fact, we have explicitly calculated this integral in 
the appendix. Its contribution to (0, in If,,(x)lO, in)Teg is given by 

(0, in If,v(x)I~, in)h 

where 

1(4)  := (4.rr)-1(~+F2/42)”2e(-42-4cL2)e(-40). (25) 
In contrast to Ah, the contribution of Ainh to (0, in I’frrU(x)1O, in)reg becomes infinite 

as soon as x + x ’ .  Therefore we have to adopt some regularisation scheme. Here we 
employ the dimensional regularisation scheme (‘t Hooft and Veltman 1972). To this 
end, first we substitute equation (22) into equations (19)-(21) to obtain 

Then we replace the Fourier transforms of AF and h,, and adopt the dimensional 
regularisation by first analytically continuuing into four-dimensional Eculidean space 
and then letting the dimension of space become an arbitrary complex number n. After 
a relatively long but straightforward calculation we are led to the following results: 

(0, in I ~ ~ , ( x ) I o ,  in);::= ( f , u ( x ) ) ~ V , + ( f , v ( x ) ) ~ n h ,  (26a) 
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Here m is an arbitrary unit of mass such that p = mpR with pR dimensionless and 
E = 2 - n/2. The function @,,,(x), which remains finite as E + 0, is defined by 

q2 
1 

+im410 d a ~ a h q e i q X l o g ( p ~ + ~ ( a - a 2 ) )  

2 2 2 

+ 5 p i  (?+;) - y]} .  
Whcn the regularisation is lifted (i.e. E -* 0) we have to continue equation (27b) back 
into the four-dimensional Minkowski space by letting id"4 + -d4q. The divergent part 
of (xlT,,,(x)l$) is of course independent of thshoice of the states Ix) and I$) (DeWitt 
1975). In fact, it is easy to see that fJ-g(f,,,)fAG may be obtained from the 
linearisation of (8/Sgw")A9 where 

(28) 
This is, of course, a well known result ('t Hooft and Veltman 1974). The finite part 
of ( ~ l T , ~ l $ )  does on the other hand depend on the choice of the states I$) and Ix), 
In our problem, for which Ix) = I$) = 10, in), we have 

U =  [g"2/8*2(n -4)]($p4-&p2R +&R,,R'*" +&R2). 

( f ~ u ( x ) ) ~  := ( f w u ( X ) ) 6 h  + ( f ~ u  ( x  ))h 

where ( r j ; v ) h  and ( f , u ) f n h  are given by equations (25) and (27a, 6) respectively. 
is not unique (Birrell and Davies 

1982). It has been argued elsewhere that the inclusion of the dynamics of the 
background field may be employed to resolve the ambiguity (Kay et a1 1980). We 
do this in the next section. 

It is well known that the identification of 

4. Renormalisation 

Consider the action integral 

w[gwu, I$)] = (4a)-"" d"x + gBR + Y B R , ~  + wsdg,, I$)], (29) 

where the integration is over an unphysical n -dimensional Riemanian manifold with 
the positive definite metric tensor gPu. In the system of natural units h = c = 1, the 
bare parameters AB and gB have the dimensionality of [length]-" and [length]-"+' 
respectively, while both A B  and yB have the dimension [lengthI4-". Wsch is the same 
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(we have substituted r(&) by l / & ) .  
Equation (30) has been written in the four-dimensional Minkowski space. The 

independence of the bare parameters from the choice of m will make the renormalised 
parameters depend on m. This dependence is governed by the ' p  function' equations 
which are obtained by differentiating equation (31a)-(31d)  with respect to m and 
then letting E + 0. To do this we introduce a scale parameter s through m = mo exp(s), 
and we then get 

aYR(s)/as = k, ( 3 2 4  

~ A R ( S ) / ~ S  = A. W e )  
These equations can easily be integrated to yield 

CLR(s) = PR(O)e-', AR(s) = A~(o)e-~ ' ,  YR(s)  = k s  + YR(O), 

gR(s) = gR(O)e-'' +%CL;($) log (KR(s)/CLR(o)), 
(33) 

The equations (32a)-(32e) ensure that the change in the scale of m does not alter 
our subtraction prescription ('t Hooft 1973). They also guarantee that the renormalised 
Einstein equation (30) does not depend on s. Thus it is only the parameters pR(0), 
AR(O), gR(O) ,  yR(0), AR(0) and m(0)  which can enter equation (30).  Regarding equation 
(30) as an equation which determines the components of g,,, one may impose 
restrictions on its solution so that the parameters AR(O), g R ( O ) ,  ~ ~ ( 0 )  and AR(0) are 
determined. For instance, one may demand that if initially (i.e. at t = -00) the quantum 
field is in the ground state 10, in) and g,, = v,,, then nothing happens, i.e. this state 
remains as it is. This will imply A R ( 0 )  = 0 which fixes the subtraction (31a) .  Similar 

AR(s) = &is + AR(O). 
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conditions may be invoked for the other parameters. This removes the finite renormali- 
sation ambiguity (Kibble 1981). 

It is worth mentioning that the renormalised equation (30) is a partial differential 
equation of fourth order. Although for AR(0)=O it admits solutions which grow 
exponentially in time (Horowitz 1980, Randjbar-Daemi 1980, 1981), this is however 
not so fatal for a classical theory of gravity. Indeed, recently Logunov et al (1979, 
1980) have proposed a new theory of gravity which has a partial differential equation 
of sixth order as its fundamental equation for the gravitation field. 

5. Summary and discussion 

In the foregoing sections we proposed a technique for the calculation of the diagonal 
matrix elements ($l?&)l$) of the stress-tensor operator fWv of a massive Hermitian 
quantum field f propagating in a background classical field g+". Then we studied the 
lowest non-trivial order in detail and after adopting the E technique we identified the 
divergent parts of (0, in I fwv(x ) lO ,  in) and showed that they are obtained from the 
variation of a counter Lagrangian given by the master formula of 't Hooft and Veltman 
(1974). 

In the absence of a self-interaction term for f this is the only counter term needed 
to remove the infinites up to any order. We incorporated this statement in the model 
by constructing a renormalisable action integral which we argued may also be employed 
to resolve the finite renormalisation ambiguities. 

Having obtained the renormalised linearised Einstein equation (30), one may now 
proceed with the investigation of the existence and properties of its solutions. Here 
we will briefly discuss two important types of solutions, both associated with AR(0) = 0. 

The first class of solutions consists of those for which the Fourier transform of 
(30) admits h,&) # 0 and q2 = 0. This is easily checked by noting that from equation 
(25) I ( q 2  = 0) = 0 so that equation (24) yields ( Twv(q2 = O)), = 0. Similarly one can 
see from expansion (27b) that 4',;'O(q2 = 0) = 0. These solutions represent gravita- 
tional waves propagating with the velocity of light. 

The second class of solutions are those for which q2 is space-like. These solutions 
can in principle be an indication of instability of the state (v rv ;  10, m)). We have 
discussed this point elsewhere (Randjbar-Daemi 1980, 1981). Here we would like 
only to mention that this result can also be interpreted as a symptom of breakdown 
of the perturbation theory. In this case it will be reminiscent of the well known 
'Landau ghost' in quantum electrodynamics (Bogoliubov and Shirkov 1980). 

Finally the last remark on the semiclassical theory of gravity concerns the time 
evolution of the quantum state. It is well known (Kibble 1978) that if one regards 
the model of the universe based on equations (1) and (2) as an exact theory in its 
own right (i.e. not an approximation to a fully quantised theory (Isham 1981)), then 
the Schrodinger equation for I$(t)) will become nonlinear. Thus the superposition 
principle of states will be violated, and as a consequence of this there will be particle 
production out of single-particle initial states (Kay et a1 1980). 
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Appendix. Evaluation of A,@, x’) in equation (23) 

From equation (23) as x -* x ‘  we need to evaluate the following integral: 

L (4 )  = j ( p  018 (P + cL 2, 6 (-Po - q OM (4 + 2qp )pAp,). (AI)  

Because of the Lorentz invariance, the most general form of IA,(q) is 

~ ( q )  = (qAqu/q2)al(q) + T A A ~ )  

where a l (q )  and az(q)  are invariant functions of q. If we contract ( A l )  and (A2)  with 
qAu and qAqu/qZ successively, we obtain 

ai(4)+4az(q)  =-cLzl(4) (A3) 

a l (q)  + = b21(q)  (A41 
where 

= ( 4 ~ ) - ’ ( $ +  cL2/q2)1/2e(-q2 -4p2)e(-q0) .  

One can easily obtain al  and a2 from equations (A3) and (A4) .  In calculating 
(T,Jh of equation (24), one needs to evaluate integrals of the form (A l ) ,  but with an 
integrand involving the product of PAP.2,. and PAP.2,Pw. These integrals may be 
evluated in a similar way. 
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